. Tuesday December 5th (2 h): Eugene.
. Advanced techniques: JOINS. NO SQL Databases.

SQL syntax rules:

1. Clauses: SQL clauses perform specific tasks, which are used as essential
components of queries and commands. Examples include 'FROM', 'WHERE',
'AND', 'OR', 'NOT"', 'ORDER BY", etc. These must be in a correct syntax and
sequence to avoid errors.

2. Statements: Each SQL command is called a statement. They start with any
SQL command keyword like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP
etc. and ends with a semicolon (;).

3. Keywords: SQL keywords are not case sensitive, such as select, from, where,
etc. However, best practices often dictate using uppercase for better readability.

4. Identifiers: Some database systems require identifiers (such as table names,
column names, and aliases) to be in uppercase, and others are case sensitive if
quotes are used (‘Name' vs 'NAME).

5. Single/Double Quotes: String values must be enclosed within single quotes
('Hello"), and identifiers/aliases can be enclosed within double quotes
(“FirstName").

A string value in SQL refers to alphanumeric characters which can consist of
letters, numbers, special characters, or spaces. String values are primarily used
to store text-based data such as names, addresses, descriptions, etc., in a SQL
database.

L String J
h|i i t i !

Character

-4

6. Comments: Single line comments start with -- and comment section starts
with /* and ends with */. //

7. Trimming Spaces: SQL is not sensitive to white spaces or line breaks.
However, proper formatting with whitespace helps improve readability of the

query.

9. Order of Execution: Different parts of a query are executed in a specific
order: FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY.
Understanding this order is important to get accurate results.

10. Data Types: Each column in a database table is required to have a name
and a data type such as CHAR, VARCHAR, INT, DATE, etc. SQL requires you to
define the type of data to be stored in each field.

These are different data types used in SQL:

1. CHAR: This is a data type that can store characters. The user needs to
define a fixed length (up to 8000 characters) when creating a column of this
type. For example, CHAR(5) could store a 5-character word.

2. VARCHAR: This is similar to CHAR. It also stores characters but it's variable-
length up to the limit specified when created (up to 8000 in SQL Server and
65535 in MySQL). It uses only as much space as the actual value needs. For
example, VARCHAR(100) can store a string of any length up to 100 characters.

3. INT: This stands for integer. It can store a whole number (a number without a
decimal place > (,)). The range of values an INT can store depends on the
specific SQL database but generally it can store a number between about -2
billion and 2 billion.

4. DATE: This data type is used to store dates. The format in which the dates are
stored depends on the specific SQL database. For example, in MySQL, the
DATE data type format is 'YYYY-MM-DD'. It only includes the date, not the time.

phpMyAdmin
2AO0IHE

Recent Favorites

— & New
&) information_schema

+- 4 wp_term_relationships
¥ wp_term_taxonomy
- wp_usermeta

-\ wp_users

B 7 Server:db » @ Database: wordpress-copy

4 Structure [SQL 4 Search [Query =} Expoi
W‘Middle_hble ‘ Add ‘
Name Type © Length/Values &
~ A 4-byte in
VARCHAR jLrangeis Ot
‘ ‘ TEXT
T DATE E
TINYINT
-
— SMALLINT E
‘ ‘ MEDIUMINT
Table comments: Lt llation:
‘ BIGINT
PARTITION definition: | pEE L
FLOAT
Partition by: DOUBLE flumn Iist‘)
REAL
Partitions: ‘ -

‘ (PreviewsaL) seu ngLEAN
review
~ © sERAL

Date and time
DATE
DATETIME
TIMESTAMP
TIME
YEAR

String
CHAR
VARCHAR

TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

RINIADYV

11. Use of Semicolons: In SQL, semicolon is the standard way to separate
each SQL statement. While some SQL databases, like MySQL, allow you to omit
the semicolon at the end of the statement, others require it.

12. Database-Specific Syntax: Keep in mind that each SQL database may
have slightly different syntax rules. For instance, MS SQL Server uses T-SQL,
Oracle Database uses PL/SQL, MySQL uses MySQL procedural language, etc.

Keep in mind that the specifics and limitations of these data types can vary
slightly depending on the SQL database management system (DBMS) being
used.

It's always essential to refer to the documentation specific to your DBMS for any
clarifications.

Each database has slightly different syntax and functionalities.
It is important to understand the specifics of the SQL variant being used.

Wildcards
% _[1*

A wildcard character in SQL is used to substitute any other character(s) in
a string. It's used with the SQL LIKE operator, and the commonly used
wildcards are "%, _, and [J.

1. Percent "% : The percent sign represents zero, one, or multiple
characters. For instance, the expression 'a%"would find any values that
start with "a’. %Evgeny%

2. Underscore "_: The underscore represents a single character. For
example, the expression 'a_" would find values such as "an’, 'am’, "at,
where there is exactly one character following "a'.

3. Brackets ‘[]: In Microsoft's SQL Server, you can also use brackets to
represent any single character within the brackets. For example "'a[bc]"
would find values such as "ab’ or "ac’.

4. The asterisk (*) is a commonly used wildcard character. In many
programming languages, command-line interfaces, and search engines,
the asterisk can replace zero or more characters in a string. This is useful
when you want to match or select a group of items having a common
pattern. For example, in a file directory, typing "*.txt" would select all text
files, whereas "doc*" may select all files beginning with "doc".

Example usage with the LIKE operator:

SELECT column_name
FROM table_name
WHERE column_name LIKE 'a%/';

This query would return all values in ‘column_name’ that start with "a’.

Remember that the interpretation of the wildcard can slightly differ based on the
SQL variant you are using. Always refer to the SQL reference specific to the
dialect you are using for precise information

What do you need to know as a tester:

The login/password/email field, which is usually a username or an email
address, should not accept wildcards.

WHY?

Accepting wildcard characters like '%"' or '_' could lead to security
vulnerabilities.

For instance, if your system had a flaw and was doing a simple SQL match for
the login field, a user could potentially enter a '%" in the login field to match any
number of arbitrary characters, leading to unauthorized access. This is a type
of attack known as a SQL injection.

In this case ANY character can be accepted as login, password, email
information.

Apart from security concerns, allowing wildcards in login fields could complicate
user experience, cause confusion, or lead to duplicate username/email issues.

You need to test all these fields this way.

From a QA tester's perspective, it's crucial to check that wildcards are not
accepted in login fields, both to prevent security issues and to maintain the
quality and integrity of user data.

Example with Middle table

Can be created manually > Example

OR with query

phpMyAdmin
REle0|HE

Recent Favorites

l_'° New

|+~ | information_schema
[+~ mysql

\fl—ﬂj performance_schema
[*+H1 sys

\I‘r,_J wordpress 1

|=— || wordpress-copy
l—_a New

Populate it with data:

8 7 Server:db » @ Database: wordpress-copy » [@ Table: Right_Table

=] Browse 4 Structure [SQL 4 Search ¥t Insert =l Expo

Run SQL query/queries on table wordpress-copy.Right_Table: &

1 CREATE TABLE Middle_Table(id INT, b TEXT);

2

INSERT INTO Middle_Table(id,value) VALUES(1,"middle1");

DROP (example with middle table)

DROP TABLE name_of the_table;

DROP TABLE Middle_Table;

DROP TABLE IF EXISTS name_of_the_table;

DROP TABLE IF EXISTS Middle Table;

ASK THREE TIMES BEFORE DO THIS!

DROP: The DROP command is used to delete an entire database,
table, indexes, or view. This is a destructive command - once you
drop a table or database, all the information in it is deleted and
there's no way to recover it (unless you have a backup). For example:
“sql
DROP TABLE table_name;

This command removes the complete data along with the table
structure or the entire database from the system. DROP operations
cannot be rolled back.

https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/control-flow-functions.html%23function_if

Before the join let create tables:

Wordpress-copy table
https://phpmyadmin.tech-start.io/index.php?route=/database/

structure&db=wordpress-copy

Manually
1. New > Create > Provide data

8 L7 Server:db » @ Database: wordpress-copy » [@ Table: Right_Table

php
afle0)FH 6

Recent Favorites

|Z] Browse @ Structure L[SQL 4 Search ¥t Insert =} Expo

Run SQL query/queries on table wordpress-copy.Right_Table: &

- @@
— & New
| 1 CREATE TABLE Middle_Table(id INT, b TEXT);
-li-— */ information_schema
*l'—) mysaql 2
-ll-— .| performance_schema
+H1 sys
e 1

+— || wordpress

= | wordpress-copy
|L & New A)

OR > remember logical operator? :)

2. Run CREATE query

https://phpmyadmin.tech-start.io/index.php?route=/database/structure&db=wordpress-copy
https://phpmyadmin.tech-start.io/index.php?route=/database/structure&db=wordpress-copy

LEFT and RIGHT table

LEFT
LN
ew
| J Extra options
—y }r_ Left_Table
+ll Columns -
-‘f_ nght_Table 1 left1
T—W Columns 2 left2
'l*"}"_ wp_commentmeta 3 left3
RIGHT

INSERT INTO Right_Table(id, value) VALUES (1, "right1");

| +—ﬂﬂ Columns id value
--Jr_ Right Table 1 right1
'Il'—ﬂﬂ Columns 3 right3

'l*"}"_ wp_commentmeta 4 rightd

JOIN is a command used in SQL databases to combine rows from two or
more tables based on a related column between them. It allows users to
query data from multiple tables as if the data resides in a single table.

There are several types of JOIN methods, including:
1. INNER JOIN: This returns records that have matching values in both tables.

2. LEFT (OUTER) JOIN: This returns all records from the left table, and the
matched records from the right table. If there is no match, the result is NULL on
the right side.

3. RIGHT (OUTER) JOIN: This returns all records from the right table, and the
matched records from the left table. If there is no match, the result is NULL on
the left side.

4. FULL (OUTER) JOIN: This returns all records when there is a match in either
the left or the right table.

The JOIN operation is a crucial command for combining and extracting
useful insights from multiple database tables.

If you understand “JOIN” you will pass any SQL related interview.

1. INNER JOIN: This returns records that have matching values in both
tables.

2 Inner Join @

SELECT Left_Table.value, Right_Table.value FROM Left_Table JOIN
Right_Table ON Left_Table.id=Right_Table.id;

SELECT Left_Table.value, Right_Table.value FROM Left_Table JOIN Right_Table
ON Left_Table.id=Right_Table.id;

id wvalue
1 right1
3 right3
4 right4

id wvalue
1 leftl
2 left2

value value
left1 right1 |

With aliases
SELECT L.value, R.value FROM Left_Table AS L JOIN Right_Table AS R ON
L.id=R.id;

SELECT wp_users.ID, wp_users.user_login,
wp_comments.comment_author,wp_comments.comment_content

FROM

wp_comments INNER JOIN wp_users ON
wp_comments.user_id=wp_users.ID;

line by line:

SELECT wp_users.ID, wp_users.user_login,

— & New
~ information_schema
~ . mysql
~ | performance_schema
~ 0 sys
~— | wordpress

4 New
+- ¥ wp_commentmeta
B wp_comments
I+f »# wp_links
+-» wp_options
44 wp_postmeta

I
+-1 wp_posts

+- 4 wp_termmeta

+-1 wp_terms

+- 1+ wp_term_relationships

+-¥ wp_term_taxonom

I+—f Wp_usermeta

~~ ¥ wp_users
+l Columns

|
+-_| Indexes

. wnrdnrace-rnny

SELECT % FROM ‘wp_users"

O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code][Refresh]

(J Showall | Numberof rows: | 25 ~ Filter rows: | Search this table Sortby key: | None
Extra options l l
—T— ¥ ID user_login user_pass user_nicename
O ¢ ©Delete 1 QA-admin PBHOTGaHGCuFtgeEsOnir/gylxWdpaR/ ga-admin
0O « © Delete 2 fira PBXxudJsKBygQaoT8k6sLhpDNUjF2R/ fira
O ¢ @ Delete 3 student PBNPNRgmfBPILd/aYJE6FtFwLzutxz3. student

() Checkall Withselected: 7 Edit ~ $iCopy @ Delete =} Export
(J Showall | Numberofrows: 25 - Filter rows: | Search this table Sort by key: | None

Query results operations

(yPrint 3:Copytocipboard =} Export gl Display chart % Create view

user_email user_url

user_registered

vadim@buildateam.io http://34.139.24.185 2022-09-11 19:34:35

fira@buildateam.io http://tech-start.io

hello@buildateam.io

wp_comments.comment_author,wp_comments.comment_content

— & New
~ | information_schema
~ mysql
~ | performance_schema
~ 0 sys
=~ | wordpress
i— o New
¥ wp_commentmeta

#-1 wp_links
:+w’ wp_options
+- 1 wp_postmeta

£ wp_posts

- wp_termmeta

¥ wp_terms

¥ wp_term_relationships
¥ wp_term_taxonomy

~¥ wp_usermeta

¥ wp_users
~ . wordpress-copy

~# wp_comments —_ 1

SELECT * FROM “wp_comments’

O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]

1v el S (] Show all Restore column order Number of rows: 25 Filter rows:
Extra options
> ¥ comment_ID comment_post ID comment_author comment_content
Hi, this is a
A WordPress comment.
Edit 3 Coy Delete 1 1
O ¢ F:Cory @ Commenter To get started with
moderat...
O 7 Edit %iCopy @ Delete 2 0 Kate
o Edit 3G Delet 3 15 testFi test comment from
it 3¢ Coy elete estFira
¢ <oy @ Postman 2
3. I'm testing comment
() Edt 3iCopy @ Delete 4 19 Fira Author 18 g
. § I'm testing comment
O Edit 3¢ Copy @ Delete 5 18 Fira Author
© = 123T
) ./ Edit 3&Copy @ Delete 6 20 Alik Commenti
. I'm testing comment
O 4 Edit $iCopy @ Delete 7 18 TatianaB Author

123

Search this table

Sortby key: | None

comment_author_email comment_author_url

p! example htips: org

test@email.com

fira@testemail.com

fira@testemail.com
alik@tastemail.com

tatiana@testmail.com

comment_author_IP

35.191.22.130

130.211.1.216

130.211.1.213
35.191.0.159

35.191.12.66

user_activation_key

2022-10-14 22:25:09 1665786309:PBk5kSGV
2022-10-20 23:39:33 1675127400:PB8CJay0

comment_dat

2022-09-11 19

2023-03-06 18

2022-10-19 01

2022-10-21 01

2022-10-21 01

2022-10-21 01

2022-10-21 01

FROM

(connecting these two tables)
wp_comments INNER JOIN wp_users

(connecting them on the related column id PK and FK in these tables)

ON

wp_comments.user_id=wp_users.ID;

8 New SELECT * FROM ‘wp_users’

~ . information_schema

- mysql O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code][Refresh |

~ | performance_schema

~ 1 sys (J Showall | Numberof rows: 25 ~ Filter rows: | Search this table Sortby key: | None v

~~ wordpress
L New Extra options l l
~ ¥ wp_commentmeta PK X -

«T— ¥ ID user_login user_pass user_nicename user_email user_url user_registered user_activation_key

~ ¥ wp_comments

} 6 wp_links O Edit %iCopy @ Delete QA-admin PSBHOTGaHGCUFtgeEsOnfr/gylxWdpaR/ qa-admin vadim@buildateam.io http://34.139.24.185 2022-09-11 19:34:35

-1 wp_options) o Edit %iCopy @ Delete fira PBXxudJsKBygQaoT8k6sLhp6DNUjF2R/ fira fira@buildateam.io http/ftech-startio 2022-10-14 22:25:09 1665786309:5P$BK5KS

4% wp_postmeta 0 o/ Edit %iCopy @ Delete student $PSBNPNRgmIBPILd/aYJE6FtFwLzutxz3. student hello@buildateam.io 2022-10-20 23:39:33 1675127400:PB8CJa

¥ wp_posts

¥ wp_termmeta () Checkall Withselectey: ,”Edit %iCopy @ Delete &} Export

~¥ wp_terms

- wp_term_relationship: (J Showall | Numberofrows: [25 ~ Filter rows: | Search this table Sortby key: | None v

~ ¥ wp_term_taxonol

- wp_usermeta Query results operations
~- i wp_users

+-ll Columns () Print Copy to clipboard =} Export gl Display chart +J Create view

+-_ | Indexes

v 0 P
®c® D - screenshot2023-11-21at 7.55.20 PM v/ ®© aa 0 g ©®
View Inspector Zoom Share Rotate Markup
o New SELECT * FROM “wp_comments
~ | information_schema
~ . mysql O Profiling [Edit inline] [Edit] [Explairf SQL] [Create PHP code] [Refresh]
~ . performance_schema
~) sys 1~ > > | [J Showall | Restorecolumnorder | Numberofrows: 25 v Filter rows: | Search this table Sortby key: | None v
~~ | wordpress
Extra options
9 New VL FK this PK in wp_users
+- 1 wp_commentmeta
i e v user_id comment ID comment post D comment author comment content comment author_email comment_author_url comment author_IP ¢
+-# wp_comments —
+ link Hi, this is a
- wp_links.
[. A WordPress comment.

) Edit i C 9 Delet 0 1 example : org/ H
834 wp_options 0 JEdt §iCopy Q Delete Commenter To get started with P e 9 ‘
8 4 wp_postrotal moderat..

T'V’ wp_posts (O ,7Edit 3&Copy @ Delete 0 2 0 Kate H
o Edit i C Delet 0 3 15 testFi test commentffom .. @email 35.191.22.130 H
@82 wp_terms O & Edt %iCopy @ Delete estFira Prtan est@email.com .191.22. H

Final result

SELECT wp_users.ID, wp_users.user_login, wp_comments.comment_author,wp_comments.comment_content FROM wp_comments INNER JOIN wp_users ON
wp_comments.user_id=wp_users.ID;

(O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code][Refresh]

() Showall | Numberofrows: 25 Filter rows: |Search this table Sort by key: | None v
‘ Extra options ‘
ID user_login _author L
1 QA-admin QA-admin "The Road Not Taken" is one of Robert Frost's—and ...
1 QA-admin QA-admin test comment (Fira)
3 student Student QA test Natallia (comment)
3 student Student QA comment 1234
No comments
3 student Student QA
No comments
1 QA-admin QA-admin This is a new column Dec 9th
3 student Student QA my reply
3 student Student QA Wishing you a fun-filled holiday season and best w...

With aliases. Aliases are used in SQL queries for several reasons:

1. Simplification: In a SQL query with join operations, we're often dealing with multiple
tables that might have complex or long names. By using aliases, we can simplify the
query, making it easier to read and write.

2. Avoiding ambiguity: If two or more tables share some column names, the SQL engine
will not know to which table the common column names refer when they are used in the
where clause or join condition. By using aliases, we can give a unique identifier to each
table's column, avoiding ambiguity.

3. Efficiency: By using aliases, we can save time and reduce errors in our queries. Once
an alias is defined, we can use it instead of the full table name or column name, making
our code neater and shorter.

4. Readability: When performing multiple joins or working with subqueries, aliases can
be used to help identify which table you are referencing, making the SQL query more
readable and maintainable. In overall it looks less scary

SELECT U.ID, U.user_login,C.comment_author,C.comment_content FROM
wp_comments AS C INNER JOIN wp_users AS U ON C.user_id=U.ID;

U = wp_users database

C = wp_comments database

LEFT (OUTER) JOIN: This returns all records from the left table, and the
matched records from the right table. If there is no match, the result is NULL on
the right side.

Table 1 ©
T Left Join 0

SELECT Left_Table.value, Right_Table.value FROM Left_Table LEFT JOIN
Right_Table ON Left_Table.id=Right_Table.id;

|| Browse & Structure] SQL 4, Search ¥ Insert =} Export [« Import = Privileges ” Operations 2 Triggers

(" show query box \)

A

+ Current selection does not contain a unique column. Grid edit, checkbox, Edit, Copy and Delete features are not available.

« Showing rows 0 - 24 (45 total, Query took 0.0006 seconds.)

T U.ID, U.user_login,C.comment_ author,C.comment_content FROM wp_comments AS C LEFT JOIN wp_users AS U ON C.user_id=U.ID;

(O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]

1v| > > | ([Showall | Numberofrows: 25 v Filter rows: | Search this table Sort by key: | None
[Extra options
ID user_login comment_author comment_content

NULL NULL A WordPress Commenter Hi, this is a comrnent.
To get started with moderat...

NULL NULL Kate

NULL NULL testFira test comment from Postman 2

NULL NULL Fira Author I'm testing comment 123

NULL NULL Fira Author I'm testing comment 123 T

NULL NULL Alik Comment1

NULL NULL TatianaB Author I'm testing comment 123
1 QA-admin QA-admin "The Road Not Taken" is one of Robert Frost's—and ...
1 QA-admin QA-admin test comment (Fira)

o Oteedams AR R ——_—

RIGHT (OUTER) JOIN: This returns all records from the right table, and the
matched records from the left table. If there is no match, the result is NULL on
the left side.

RIGHT JOIN

SELECT Left Table.value, Right Table.value FROM Left Table
RIGHT JOIN Right Table ON Left Table.id=Right Table.id;

value value
left1

NULL right3
NULL rightd

SELECT U.ID, U.user_login,C.comment_author,C.comment_content FROM
wp_comments AS C RIGHT JOIN wp_users AS U ON C.user_id=U.ID;

SELECT U.ID, U.user_login,C.comment_ author,C.comment content FROM wp_comments AS C RI(

IT JOIN wp_users AS U ON C.user_id=U.ID;
(O Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]
[J Show all Number of rows: 25 v Filter rows: | Search this table Sort by key: | None v

Extra options

ID user_login comment_author comment_content

1 QA-admin QA-admin "The Road Not Taken" is one of Robert Frost's—and ...
1 QA-admin QA-admin test comment (Fira)
3 student Student QA test Natallia (comment)
3 student Student QA comment 1234
3 student Student QA No comments
No comments
1 QA-admin QA-admin This is a new column Dec 9th
3 student Student QA my reply
3 student Student QA Wishing you a fun-filled holiday season and best w...
3 student Student QA Warmest wishes for a happy Christmas and a wonderf...
3 student Student QA This is a great idea for my family! We have never ...

The UNION operator in SQL is used to combine the result set of two or more
SELECT statements. However, it removes any duplicate rows from the
combined result set. Also, the SELECT statements within the UNION must have
the same number of columns and those columns must have similar data types.

Union @+®

SlWl=IN|-

SELECT Left_Table.id, Left_Table.value FROM Left_Table UNION SELECT
Right_Table.id, Right_Table.value FROM Right_Table;

id value
1 right1
3 right3
4 right4

SELECT wp_users.ID, wp_users.user_login FROM wp_users

UNION
SELECT wp_comments.comment_author,wp_comments.comment_content

7 DIOWING rOWS U - 24 (45 L01dl, WUETY LOUK U.UUUY SECUNUS.)

SELECT wp_users.ID, wp_users.user_login FROM wp_users UNION SELECT wp_comments.comment_author,wp_comments.comment_content FROM wp_comments;

(OJ Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]

1v > >> (J Showall Number of rows: 25 v Filter rows: |Search this table Sort by key: | None v
Extra options
ID user_login
2 fira
1 QA-admin
3 student

Hi, this is a cot nt.
A WordPress Commenter Rl m.rne
To get started with moderat...

Kate

testFira test comment from Postman 2
Fira Author I'm testing comment 123

Fira Author I'm testing comment 123 T
Alik Comment1

TatianaB Author I'm testing comment 123
QA-admin "The Road Not Taken" is one of Robert Frost's—and ...
QA-admin test comment (Fira)

Student QA test Natallia (comment)
Student QA comment 1234

Student QA No comments

No comments
QA-admin This is a new column Dec 9th

NoSQL

Non-Relational
Database

Relational

Analytical (OLAP)

Types of NoSQL

*Document databases store data in documents similar to
JSON (JavaScript Object Notation) objects. Ex. MongoDB
and CouchDB

*Key-value databases are a simpler type of database
where each item contains keys and values. Ex. Redis and
DynamoDB

*Wide-column stores store data in tables, rows, and
dynamic columns. Ex. Cassandra and HBase

*Graph databases store data in nodes and edges Ex. Azure
Gremlin, Neo4)

Key-Value Column-Family
- — .]
- .
B e = ow
- — -
Graph Document

. o »

QR .

. R

A NN

o000

SQL (Structured Query Language) and NoSQL (Not Only SQL) databases are
both ways to store and retrieve data, but they provide different mechanisms for
storage and retrieval, which makes them useful for different kinds of

applications.

Here's a breakdown of some of the key differences:

1. Structure: SQL databases are structured, meaning they store data in tables
with rows and columns, much like a spreadsheet. This kind of structure is
also known as a relational database.

2. 1.1 NoSQL databases, on the other hand, can store data in various ways,
including key-value pairs, wide-column stores, graph databases, or
document-based stores. This flexibility can make NoSQL databases a good
fit for data that doesn't fit neatly into a table.

2. Schema: SQL databases have a predefined schema, or structure, that their

data must adhere to. Before you can store data, you need to define what types

of data will be stored where.

NoSQL databases are schema-less, meaning you can store any kind of data in
any structure you want at any time, which provides flexibility when dealing with
unstructured or semi-structured data.

3. Scaling: SQL databases are typically scaled up by increasing the horsepower
of the machine they’re hosted on (CPU, RAM, SSD). This is called

Vertical Scaling. Conversely, NoSQL databases are typically scaled out by
adding more machines to the database. This is called Horizontal Scaling.
Horizontal scaling can make NoSQL databases a good fit for handling large
amounts of data and high traffic loads.

4. Transactions: SQL databases use ACID transactions (Atomic, Consistent,
Isolated, Durable) which assure that any transaction will complete or fail as a
whole. This is crucial for applications where consistency of data is important,
like banking systems. NoSQL databases typically do not provide ACID
transactions, but some do offer eventual consistency.

5. Language: SQL databases use SQL (structured query language) for defining
and manipulating the data. It's highly powerful and versatile, allowing you to do
things like query specific data, join separate data sets together, and perform
complex operations on the data. NoSQL databases have a variety of query
languages and APIs to work with. Some have their own languages (like
MongoDB's MQL), while others use APIs or even SQL-like languages.

6. Complexity: In general, SQL databases may require more upfront planning
and may be more complex to design due to the need for a predefined schema,
but they offer robust data integrity through ACID transactions.

In conclusion, the choice between SQL and NoSQL
will largely depend on the specific requirements and the nature of your project.

SQL is often the choice for projects that involve complex queries and require
heavy transactional operations, where data integrity and consistency over
time are key. Examples of applications that might benefit from an SQL
database include accounting systems or systems that manage transactions.

On the other hand, NoSQL databases are generally better suited for storing
large volumes of diverse, fast-changing, or real-time data and for horizontal
scaling. They are often used in big data and real-time web applications.
Examples include real-time analytics, content management systems, or any
scenario where you need to quickly store and retrieve data across large, often
unpredictable user bases.

It's worth noting that many organizations today are opting for polyglot
persistence, where they use a combination of SQL and NoSQL databases, each
purpose-built for different needs within the total application.

Different Syntax

Create

db.collection.insertOne()
db.collection.insertMany()

Read

db.collection.find(<filter>)

Update

db.collection.updateOne(<filter>,<update>,<options>)
db.collection.updateMany(<filter>,<update>,<options>)
db.collection.replaceOne(<filter>,<update>,<options>)

Delete

db.collection.deleteOne()
db.collection.deleteMany()
db.collection.remove()

SQL vs. NoSQL

Data Storage Table with fixed rows and columns Document: JSON documents,

Model Key-value: key-value pairs,
Wide-column: tables with rows and dynamic
columns,

Graph: nodes and edges

Schemas Rigid Flexible

Scaling Vertical (scale up with a larger server) Horizontal(scale out with more servers)

ACID Transactions Supported Most do not support. However, some (like

MongoDB) do

Joins Typically Required. Typically not required
Data in SQL databases is typically Optimized for queries.
normalized, so queries for a single object Data that is accessed together should be stored
or entity require you to join data from together.

multiple tables.

Advanced Stuff just FYI:

ACID is an acronym that stands for Atomicity, Consistency, Isolation, and
Durability.

These are a set of properties that guarantee reliable processing of data in a
database system - particularly for database transactions.

1. **Atomicity**: Refers to the "all or nothing" nature of transactions. This means
if a transaction has multiple operations, either all of them are completed
successfully or none of them is performed. If any operation fails, the entire
transaction is rolled back so that a partial transaction does not occur.

2. **Consistency™: Ensures that all data in a database must meet specified rules
(constraints, cascades, triggers, etc.). When a transaction is completed, it must
leave the database in a consistent state, meaning the overall integrity of data is
maintained.

3. "Isolation™: This property ensures that multiple transactions occurring at the
same time won’t impact each other's execution. Each transaction should occur
in a "transactional bubble" isolated from other simultaneous transactions,
maintaining data integrity.

4. **Durability**: Guarantees that once a transaction is committed, it will remain
so, even in the event of power loss, crashes, or errors. This property ensures
powered-down data persistence in the database.

In summary, ACID properties play a critical role in any database system as they
maintain the reliability, functionality, and integrity of data, especially in situations
like system failures, concurrent access, database crashes, and error recovery.

Choose
SQL vs. NoSQL

Factors to consider when selecting
a SQL or NoSQL database

Data Structure
ACID Transactions
Ability to query data
Scaling

SQL Database Example:

[Ebhank

A multinational bank uses a SQL database to manage its operations. Customer
information, account details, transaction histories, bank branch details, etc. are
all stored in a structured format, which is facilitated excellently by a relational
SQL database. SQL’s efficient querying capabilities are utilized to quickly
retrieve specific information - such as transaction details for a particular
customer, account status, customers of a particular branch, etc.

Non-SQL Database Example:

amazon
"

A large e-commerce company, such as Amazon, uses a NoSQL database to
handle its big data requirements. Product details, customer behaviors, website
clicks, and purchase histories are all stored in a non-structured format and
analyzed to improve customer experience, provide personalized product
recommendations, and predict trends. Because of its capability to store a large
volume of diverse data and its scalability, a NoSQL database is ideal for this
purpose.

Here are some aspects testers need to know:

1. SQL Joins: Understanding INNER JOIN, LEFT JOIN, RIGHT JOIN and FULL
JOIN is crucial for manipulating and fetching data from multiple tables.

2. Basic SQL Syntax: Understanding the basics of SQL, such as how to create,
read, update, and delete data, as well as how to use WHERE, AND, OR
conditions, allows testers to set up, modify, and tear down test data.

3. Aggregation Functions: Knowledge of aggregation functions like COUNT,
SUM, AVG, MAX, MIN could be useful in validation of the data.

4. Understanding Relationships: Testers should understand how tables are
related via foreign keys, primary keys, and indices. This will allow them to
understand the database schema and how changes to one table might affect
others.

Advanced security > SQL Injection: (wildcards etc)
It's important to understand SQL injection vulnerabilities and how to prevent
them to ensure the application is secured.

SQL Injection is a code injection technique that attackers use to insert malicious
SQL code into a query.

The malicious data then produces unanticipated and potentially harmful actions
when the database is queried.

Attackers use SQL Injection attacks to manipulate a site's database, usually to
extract valuable information such as usernames, passwords, emails, credit card
numbers, etc.

For example, suppose there is a login form on a website that queries the
database like this:

“sql
SELECT * FROM Users WHERE Username=" AND Password="'

An attacker could submit a username of ‘admin' --" and
a password of “****** This modifies the query to:

“sql
SELECT * FROM Users WHERE Username='admin' --' AND
Password="'anyvalue'

The double dash *--" in SQL represents a comment indicator, and anything
following it is ignored. As a result, this query effectively checks if there is a user
‘admin’, without considering the password.

To prevent SQL Injection attacks, you should:

- Always use Parameterized queries or Prepared Statements.

- Use a Web Application Firewall.

- Regularly update and patch your systems.

- Limit the privileges of database accounts used by web applications.
- Validate and sanitize all user inputs.

Database testing involves checking the integrity, accuracy, and consistency of
data in a database-driven application. It's a critical part of a software testing
process as it ensures that the application provides accurate information.

The main goal of database testing is to find bugs and errors related to database
operations, such as any data leakage, deadlocks, data corruption, performance
issues, etc.

Database testing usually involves the following activities:

1. **Schema Testing**: Verifying the database schema to ensure it matches the
expected schema.

2. **Data Consistency Testing**: Checking the data's correctness and
consistency.

3. **Data Integrity Testing**: Checking the integrity of data, especially after
operations such as update, delete, insert, and migration.

4. **Data Accuracy Testing™: Validating the data inside the database to ensure
accuracy.

5. ™Performance Testing**: Assessing the database's performance and
optimizing the queries for better speed.

6. **Security Testing™: Ensuring that only authorized personnel have access to
the database and checking the database's vulnerability to attacks like SQL
Injection.

7. **ACID Properties Testing**: Verifying Atomicity, Consistency, Isolation, and
Durability properties.

8. **Functional Flow Testing**: Checking for any functional errors during user
flow, such as creating a new record

A Database Management Client is a computer program that provides a way to
interact with the database. These can be command-line tools or graphical
interfaces that let you connect to the database server, run SQL commands,
browse and edit data, manage database objects (such as tables, indexes, keys),
export and import data, debug, profile and more.

Here are some common Database Management Clients for different databases:

1. *MySQL Workbench**: It's a comprehensive tool for MySQL database
management. It provides data modeling, SQL development, and easy
administration.

2. "phpMyAdmin**: A web interface that is widely used for managing MySQL
databases.

3. *SSMS (SQL Server Management Studio)**: It's a software application used
for configuring, managing, and administering all components within Microsoft
SQL Server.

4. **Oracle SQL Developer**: An integrated development environment that
simplifies the development and management of Oracle Database.

5. *pgAdmin**: A popular open-source and feature-rich administration and
management tool for PostgreSQL.

6. **MongoDB Compass**: The GUI for MongoDB which allows you to visually
explore your data, run ad-hoc queries, and more.

The choice of a client often depends on what database you're using, your
specific needs, and personal preferences.

Homework

Create a post from backend.

Iil-}[L wp_posts
l f —ll Columns
+~. | Indexes

How to understand data in columns

D
v post_author post date post_date_gmt post_content post title post excerpt post status comment status ping status post password post name to ping pinged post modified post_modified_gmt po:
1
. 288-revision-
289 1 2023-12-02 16:27:38 2023-12-02 16:27:38 EvgenyDec2 inherit closed closed v 2023-12-02 16:27:38 2023-12-02 16:27:38

View . Inspector ~ Zoom Share Rotate Markup B Name Type
O 1bpH bigint(20)
[J 2 post author > bigint(20)
[J 3 post_date /> datetime
post_content filtered post_parent guid menu_order post_type post_mime _type comment_count [] 4 post date_gmt datetime
[J 5 post_content longtext
hnps?‘MU’dpmss‘mm_ 0 revision 0] 6 post title text
start.io/?p=289
[7 post_excerpt text
[] 8 post_status > varchar(20)
[J 9 comment status varchar(20)
[] 10 ping_status varchar(20)
(] 11 post_password varchar(255)
[] 12 post name /> varchar(200)
(] 13 to_ping text

text

14 pinged
15 post_modified datetime
16 post_modified gmt datetime

17 post_content _filtered longtext

- 18 post_parent > bigint(20)
19 guid varchar(255)
Dickinson Pink Floyd - PVG 20 menu_order int(11)

21 post_type varchar(20)

22 post_mime type varchar(100)

0000000000

23 comment_count bigint(20)

Query

INSERT INTO ‘'wp_posts (ID’, ‘post_author’, ‘post_date’, ‘post_date_gmt’,
‘post_content, ‘post_title’, post_excerpt, ‘post_status’, comment_status’,
‘ping_status’, ‘post_password’, ‘post_name’, to_ping’, pinged,
‘post_modified’, ‘post_modified_gmt’, ‘post_content_filtered’, ‘post_parent,
‘guid’, ‘menu_order’, ‘post_type’, ‘post_mime_type, comment_count)
VALUES

(290,

1,

2023-12-02,

2023-12-02,

"adding_post_from_database”,

"EvgenyBackEnd",

"NO",

"inherit",

"closed"”,

"closed",

"NO",

"290-revision-vi1",

"to_ping",

"pinged”,

"2023-12-02",

"2023-12-02",

"text",

289,

"https://wordpress.tech-start.io/?p=290",

0,

"revision",

q
0);

OR

INSERT INTO ‘'wp_posts'(ID’, ‘post_author, ‘post_date’, ‘post_date_gmt,
‘post_content’, ‘post_title’, ‘post_excerpt, ‘post_status’, ‘comment_status,
‘ping_status’, ‘post_password’, ‘post_name’, to_ping’, pinged, ‘post_modified,
‘post_modified_gmt’, ‘post_content_filtered’, ‘post_parent’, ‘guid’, ‘'menu_order,
‘post_type’, ‘post_mime_type’, comment_count) VALUES (291, 1,
"2023-12-02", "2023-12-02", "adding_post_from_database", "EvgenyBackEnd",
"NO", "publish", "open", "closed", "N0", "291-revision-v1", "to_ping", "pinged",
"2023-12-02", "2023-12-02", "text", 290, "https://wordpress.tech-start.io/?
p=290", 0, "post", "q", 0);

-| Browse & Structure L] SQL , Search ¥¢ Insert =} Export [& Import a°| Privileges J° Operations 2= Triggers

Run SQL query/queries on table wordpress.wp_posts: &

INSERT INTO ‘wp_posts'("ID', ‘“post_author’, ‘post_date’, “post_date_gmt', ‘post_content’, “post_title’, ‘post_excerpt’, ‘post_status’, ‘comment_status’,
‘ping_status', ‘post_password', ‘post_name', ‘to_ping', ‘pinged’, ‘post_modified', ‘post_modified_gmt', ‘post_content_filtered', ‘post_parent’, ‘guid’,
‘menu_order’, ‘post_type', ‘post_mime_type', ‘comment_count’) VALUES (291, 1, "2023-12-02", "2023-12-02", "adding_post_from_database", "EvgenyBackEnd", "NO",
"publish", "open", "closed", "NO", "291-revision-v1", "to_ping", "pinged", "2023-12-02", "2023-12-02", "text", 290, "https://wordpress.tech-start.io/?p=290",
@, "post", "q", 0);

[g Edit 3iCopy @ Delete 292 1 2023-12:02 00:00:00 2023-12-02 00:00:00 adding_post_from_database EvgenyBackEnd NO publish open closed No ©" toping pinged 20231

Create a query and find you post

T + post author post date post date gmt post_content post title post excerpt post status comment status ping_status post password post name to ping pinged post |
1
i 291-revision-
[0 P Edt 3iCopy @ Delete 292 1 2023-12-02 00:00:00 2023-12-02 00:00:00 adding_post_from_database EvgenyBackEnd NO publish open closed No X to_ping pinged 2023-1
N v

Validate it from frontend

T @& QAcourse 10 B 7 + New Howdy, QA-admin
Screen Options v || Help v
@ Dashboard Posts [Add New post
A Posts I In order to user Custom Product Builder, Make sure you've WooC e Installed and Activated
All Posts
| You e just one step away - Complate "Custom Product Builder For WooCommerce" Activaion Now

Categories
o83 All (68) | Mine (28) | Published (40) | Sticky (1) | Drafts (28) | Trash (12) J[[searcn posts
0] Media | Bukactions v | [apply | [Al ates ~ || Al categories v || Fiter 68 items 1 |ota[> ‘ »
M Pages
B Pag Title Author Categories Tags L] Date &
¥ Comments @ -

EvgenyDec2 QA-admin Uncategorized - = Published

2023/12/02 at 4:27 pm
A Appearance
¢ Plugins @) Kate December Tst SQL post QA-admin Uncategorized - - Published
2023/12/02 at 12:08 am

& Users

EvgenyBackEnd — Password protected QA-admin = = = Published
B Settings -
& & EvgenyBackEnd — Password protected QA-admin - - . published

2023/12/02 at 12:00 am
Email to users

