
• Tuesday December  5th (2 h): Eugene.  
• Advanced techniques: JOINS. NO SQL Databases. 

SQL syntax rules: 

1. Clauses: SQL clauses perform specific tasks, which are used as essential 
components of queries and commands. Examples include 'FROM', 'WHERE', 
'AND', 'OR', 'NOT', 'ORDER BY', etc. These must be in a correct syntax and 
sequence to avoid errors. 


2. Statements: Each SQL command is called a statement. They start with any 
SQL command keyword like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP 
etc. and ends with a semicolon (;).


3. Keywords: SQL keywords are not case sensitive, such as select, from, where, 
etc. However, best practices often dictate using uppercase for better readability. 


4. Identifiers: Some database systems require identifiers (such as table names, 
column names, and aliases) to be in uppercase, and others are case sensitive if 
quotes are used ('Name' vs 'NAME').


5. Single/Double Quotes: String values must be enclosed within single quotes 
('Hello'), and identifiers/aliases can be enclosed within double quotes 
(“FirstName").


A string value in SQL refers to alphanumeric characters which can consist of 
letters, numbers, special characters, or spaces. String values are primarily used 
to store text-based data such as names, addresses, descriptions, etc., in a SQL 
database.




6. Comments: Single line comments start with -- and comment section starts 
with /* and ends with */. //


7. Trimming Spaces: SQL is not sensitive to white spaces or line breaks. 
However, proper formatting with whitespace helps improve readability of the 
query.


9. Order of Execution: Different parts of a query are executed in a specific 
order: FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY. 
Understanding this order is important to get accurate results.


10. Data Types: Each column in a database table is required to have a name 
and a data type such as CHAR, VARCHAR, INT, DATE, etc. SQL requires you to 
define the type of data to be stored in each field. 


These are different data types used in SQL:


1. CHAR: This is a data type that can store characters. The user needs to 
define a fixed length (up to 8000 characters) when creating a column of this 
type. For example, CHAR(5) could store a 5-character word.


2. VARCHAR: This is similar to CHAR. It also stores characters but it's variable-
length up to the limit specified when created (up to 8000 in SQL Server and 
65535 in MySQL). It uses only as much space as the actual value needs. For 
example, VARCHAR(100) can store a string of any length up to 100 characters.


3. INT: This stands for integer. It can store a whole number (a number without a 
decimal place > (,)). The range of values an INT can store depends on the 
specific SQL database but generally it can store a number between about -2 
billion and 2 billion.


4. DATE: This data type is used to store dates. The format in which the dates are 
stored depends on the specific SQL database. For example, in MySQL, the 
DATE data type format is 'YYYY-MM-DD'. It only includes the date, not the time. 









11. Use of Semicolons: In SQL, semicolon is the standard way to separate 
each SQL statement. While some SQL databases, like MySQL, allow you to omit 
the semicolon at the end of the statement, others require it.


12. Database-Specific Syntax: Keep in mind that each SQL database may 
have slightly different syntax rules. For instance, MS SQL Server uses T-SQL, 
Oracle Database uses PL/SQL, MySQL uses MySQL procedural language, etc. 


Keep in mind that the specifics and limitations of these data types can vary 
slightly depending on the SQL database management system (DBMS) being 
used. 

It's always essential to refer to the documentation specific to your DBMS for any 
clarifications.


Each database has slightly different syntax and functionalities.  
It is important to understand the specifics of the SQL variant being used. 



Wildcards  
% _ [ ] * 

A wildcard character in SQL is used to substitute any other character(s) in 
a string. It's used with the SQL LIKE operator, and the commonly used 
wildcards are `%`, `_`, and `[]`. 

1. Percent `%`: The percent sign represents zero, one, or multiple 
characters. For instance, the expression `'a%'`would find any values that 
start with `a`. %Evgeny% 

2. Underscore `_`: The underscore represents a single character. For 
example, the expression `'a_'` would find values such as `an`, `am`, `at`, 
where there is exactly one character following `a`. 

3. Brackets `[ ]`: In Microsoft's SQL Server, you can also use brackets to 
represent any single character within the brackets. For example `'a[bc]'` 
would find values such as `ab` or `ac`. 

4. The asterisk (*) is a commonly used wildcard character. In many 
programming languages, command-line interfaces, and search engines, 
the asterisk can replace zero or more characters in a string. This is useful 
when you want to match or select a group of items having a common 
pattern. For example, in a file directory, typing "*.txt" would select all text 
files, whereas "doc*" may select all files beginning with "doc". 

Example usage with the LIKE operator:


```

SELECT column_name

FROM table_name

WHERE column_name LIKE 'a%';

```


This query would return all values in `column_name` that start with `a`.




Remember that the interpretation of the wildcard can slightly differ based on the 
SQL variant you are using. Always refer to the SQL reference specific to the 
dialect you are using for precise information


What do you need to know as a tester: 

The login/password/email field, which is usually a username or an email 
address, should not accept wildcards.


WHY?  

Accepting wildcard characters like '%' or '_' could lead to security 
vulnerabilities.

For instance, if your system had a flaw and was doing a simple SQL match for 
the login field, a user could potentially enter a '%' in the login field to match any 
number of arbitrary characters, leading to unauthorized access. This is a type 
of attack known as a SQL injection. 

In this case ANY character can be accepted as login, password, email 
information.


Apart from security concerns, allowing wildcards in login fields could complicate 
user experience, cause confusion, or lead to duplicate username/email issues. 


You need to test all these fields this way. 
From a QA tester's perspective, it's crucial to check that wildcards are not 
accepted in login fields, both to prevent security issues and to maintain the 
quality and integrity of user data.




Example with Middle table  

Can be created manually > Example 

OR with query   

  

Populate it with data: 

INSERT INTO Middle_Table(id,value) VALUES(1,"middle1"); 



DROP  ( example with middle table) 

DROP TABLE name_of_the_table; 

DROP TABLE Middle_Table;


DROP TABLE IF EXISTS name_of_the_table; 

DROP TABLE IF EXISTS Middle_Table;



                    ASK THREE TIMES BEFORE DO THIS! 

DROP: The DROP command is used to delete an entire database, 
table, indexes, or view. This is a destructive command – once you 
drop a table or database, all the information in it is deleted and 
there's no way to recover it (unless you have a backup). For example: 

    ```sql

    DROP TABLE table_name;    ```


    This command removes the complete data along with the table 
structure or the entire database from the system. DROP operations 
cannot be rolled back.


https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://phpmyadmin.tech-start.io/url.php?url=https://dev.mysql.com/doc/refman/5.7/en/control-flow-functions.html%23function_if


Before the join let create tables: 

Wordpress-copy table 
https://phpmyadmin.tech-start.io/index.php?route=/database/
structure&db=wordpress-copy 

Manually 
1. New > Create > Provide data 

OR > remember logical operator? :)  

2. Run CREATE query  

https://phpmyadmin.tech-start.io/index.php?route=/database/structure&db=wordpress-copy
https://phpmyadmin.tech-start.io/index.php?route=/database/structure&db=wordpress-copy


LEFT and RIGHT table  

LEFT 
 

RIGHT 
INSERT INTO Right_Table(id, value) VALUES (1, "right1"); 
 



JOIN is a command used in SQL databases to combine rows from two or 
more tables based on a related column between them. It allows users to 
query data from multiple tables as if the data resides in a single table.  

There are several types of JOIN methods, including: 

1. INNER JOIN: This returns records that have matching values in both tables.


2. LEFT (OUTER) JOIN: This returns all records from the left table, and the 
matched records from the right table. If there is no match, the result is NULL on 
the right side.


3. RIGHT (OUTER) JOIN: This returns all records from the right table, and the 
matched records from the left table. If there is no match, the result is NULL on 
the left side.

4. FULL (OUTER) JOIN: This returns all records when there is a match in either 
the left or the right table.


The JOIN operation is a crucial command for combining and extracting 
useful insights from multiple database tables. 

If you understand “JOIN” you will pass any SQL related interview.  

                



1. INNER JOIN: This returns records that have matching values in both 
tables.





 

SELECT Left_Table.value, Right_Table.value FROM Left_Table JOIN 
Right_Table ON Left_Table.id=Right_Table.id; 

SELECT Left_Table.value, Right_Table.value FROM Left_Table JOIN Right_Table 
ON Left_Table.id=Right_Table.id;


 



With aliases 
SELECT L.value, R.value FROM Left_Table AS L JOIN Right_Table AS R ON 
L.id=R.id; 



SELECT wp_users.ID, wp_users.user_login, 
wp_comments.comment_author,wp_comments.comment_content  
FROM  
wp_comments INNER JOIN wp_users ON  
wp_comments.user_id=wp_users.ID; 

line by line:

SELECT wp_users.ID, wp_users.user_login, 

wp_comments.comment_author,wp_comments.comment_content 



FROM  
(connecting these two tables) 
wp_comments INNER JOIN wp_users  

(connecting them on the related column id PK and FK in these tables) 
ON  
wp_comments.user_id=wp_users.ID; 



Final result

With aliases. Aliases are used in SQL queries for several reasons:

1. Simplification: In a SQL query with join operations, we're often dealing with multiple 
tables that might have complex or long names. By using aliases, we can simplify the 
query, making it easier to read and write.

2. Avoiding ambiguity: If two or more tables share some column names, the SQL engine 
will not know to which table the common column names refer when they are used in the 
where clause or join condition. By using aliases, we can give a unique identifier to each 
table's column, avoiding ambiguity.

3. Efficiency: By using aliases, we can save time and reduce errors in our queries. Once 
an alias is defined, we can use it instead of the full table name or column name, making 
our code neater and shorter.

4. Readability: When performing multiple joins or working with subqueries, aliases can 
be used to help identify which table you are referencing, making the SQL query more 
readable and maintainable. In overall it looks less scary



SELECT U.ID, U.user_login,C.comment_author,C.comment_content FROM 
wp_comments AS C INNER JOIN wp_users AS U ON C.user_id=U.ID; 

U = wp_users database 

C = wp_comments database 



LEFT (OUTER) JOIN: This returns all records from the left table, and the 
matched records from the right table. If there is no match, the result is NULL on 
the right side. 

 
 

SELECT Left_Table.value, Right_Table.value FROM Left_Table LEFT JOIN 
Right_Table ON Left_Table.id=Right_Table.id; 

 





RIGHT (OUTER) JOIN: This returns all records from the right table, and the 
matched records from the left table. If there is no match, the result is NULL on 
the left side. 
 

SELECT Left_Table.value, Right_Table.value FROM Left_Table 
RIGHT JOIN Right_Table ON Left_Table.id=Right_Table.id;



SELECT U.ID, U.user_login,C.comment_author,C.comment_content FROM 
wp_comments AS C RIGHT JOIN wp_users AS U ON C.user_id=U.ID; 
 



The UNION operator in SQL is used to combine the result set of two or more 
SELECT statements. However, it removes any duplicate rows from the 
combined result set. Also, the SELECT statements within the UNION must have 
the same number of columns and those columns must have similar data types.


 

SELECT Left_Table.id, Left_Table.value FROM Left_Table UNION SELECT 
Right_Table.id, Right_Table.value FROM Right_Table;






SELECT wp_users.ID, wp_users.user_login FROM wp_users  
UNION  
SELECT wp_comments.comment_author,wp_comments.comment_content  

 









SQL (Structured Query Language) and NoSQL (Not Only SQL) databases are 
both ways to store and retrieve data, but they provide different mechanisms for 
storage and retrieval, which makes them useful for different kinds of 
applications.




Here's a breakdown of some of the key differences: 

1. Structure: SQL databases are structured, meaning they store data in tables 
with rows and columns, much like a spreadsheet. This kind of structure is 
also known as a relational  database.


2. 1.1 NoSQL databases, on the other hand, can store data in various ways, 
including key-value pairs, wide-column stores, graph databases, or 
document-based stores.  This flexibility can make NoSQL databases a good 
fit for data that doesn't fit neatly into a table.                                           

2. Schema: SQL databases have a predefined schema, or structure, that their 
data must adhere to. Before you can store data, you need to define what types 
of data will be stored where. 

NoSQL databases are schema-less, meaning you can store any kind of data in 
any structure you want at any time, which provides flexibility when dealing with 
unstructured or semi-structured data.


3. Scaling: SQL databases are typically scaled up by increasing the horsepower 
of the machine they’re hosted on (CPU, RAM, SSD). This is called


Vertical Scaling. Conversely, NoSQL databases are typically scaled out by 
adding more machines to the database. This is called Horizontal Scaling. 
Horizontal scaling can make NoSQL databases a good fit for handling large 
amounts of data and high traffic loads.


4. Transactions: SQL databases use ACID transactions (Atomic, Consistent, 
Isolated, Durable) which assure that any transaction will complete or fail as a 
whole. This is crucial for applications where consistency of data is important, 
like banking systems. NoSQL databases typically do not provide ACID 
transactions, but some do offer eventual consistency.




5. Language: SQL databases use SQL (structured query language) for defining 
and manipulating the data. It's highly powerful and versatile, allowing you to do 
things like query specific data, join separate data sets together, and perform 
complex operations on the data. NoSQL databases have a variety of query 
languages and APIs to work with. Some have their own languages (like 
MongoDB's MQL), while others use APIs or even SQL-like languages.


6. Complexity: In general, SQL databases may require more upfront planning 
and may be more complex to design due to the need for a predefined schema, 
but they offer robust data integrity through ACID transactions.


In conclusion, the choice between SQL and NoSQL

will largely depend on the specific requirements and the nature of your project. 


SQL is often the choice for projects that involve complex queries and require 
heavy transactional operations, where data integrity and consistency over 
time are key. Examples of applications that might benefit from an SQL 
database include accounting systems or systems that manage transactions.


On the other hand, NoSQL databases are generally better suited for storing 
large volumes of diverse, fast-changing, or real-time data and for horizontal 
scaling. They are often used in big data and real-time web applications. 
Examples include real-time analytics, content management systems, or any 
scenario where you need to quickly store and retrieve data across large, often 
unpredictable user bases.


It's worth noting that many organizations today are opting for polyglot 
persistence, where they use a combination of SQL and NoSQL databases, each 
purpose-built for different needs within the total application.




Different Syntax










Advanced Stuff just FYI:

ACID is an acronym that stands for Atomicity, Consistency, Isolation, and 
Durability. 

These are a set of properties that guarantee reliable processing of data in a 
database system - particularly for database transactions. 


1. **Atomicity**: Refers to the "all or nothing" nature of transactions. This means 
if a transaction has multiple operations, either all of them are completed 
successfully or none of them is performed. If any operation fails, the entire 
transaction is rolled back so that a partial transaction does not occur.


2. **Consistency**: Ensures that all data in a database must meet specified rules 
(constraints, cascades, triggers, etc.). When a transaction is completed, it must 
leave the database in a consistent state, meaning the overall integrity of data is 
maintained.


3. **Isolation**: This property ensures that multiple transactions occurring at the 
same time won’t impact each other's execution. Each transaction should occur 
in a "transactional bubble" isolated from other simultaneous transactions, 
maintaining data integrity.


4. **Durability**: Guarantees that once a transaction is committed, it will remain 
so, even in the event of power loss, crashes, or errors. This property ensures 
powered-down data persistence in the database. 


In summary, ACID properties play a critical role in any database system as they 
maintain the reliability, functionality, and integrity of data, especially in situations 
like system failures, concurrent access, database crashes, and error recovery.









SQL Database Example:  

A multinational bank uses a SQL database to manage its operations. Customer 
information, account details, transaction histories, bank branch details, etc. are 
all stored in a structured format, which is facilitated excellently by a relational 
SQL database. SQL’s efficient querying capabilities are utilized to quickly 
retrieve specific information - such as transaction details for a particular 
customer, account status, customers of a particular branch, etc.


Non-SQL Database Example: 
 

A large e-commerce company, such as Amazon, uses a NoSQL database to 
handle its big data requirements. Product details, customer behaviors, website 
clicks, and purchase histories are all stored in a non-structured format and 
analyzed to improve customer experience, provide personalized product 
recommendations, and predict trends. Because of its capability to store a large 
volume of diverse data and its scalability, a NoSQL database is ideal for this 
purpose.




Here are some aspects testers need to know: 

1. SQL Joins: Understanding INNER JOIN, LEFT JOIN, RIGHT JOIN and FULL 
JOIN is crucial for manipulating and fetching data from multiple tables.


2. Basic SQL Syntax: Understanding the basics of SQL, such as how to create, 
read, update, and delete data, as well as how to use WHERE, AND, OR 
conditions, allows testers to set up, modify, and tear down test data.


3. Aggregation Functions: Knowledge of aggregation functions like COUNT, 
SUM, AVG, MAX, MIN could be useful in validation of the data.


4. Understanding Relationships: Testers should understand how tables are 
related via foreign keys, primary keys, and indices. This will allow them to 
understand the database schema and how changes to one table might affect 
others.




Advanced security >  SQL Injection:  (wildcards etc) 
It's important to understand SQL injection vulnerabilities and how to prevent 
them to ensure the application is secured.


SQL Injection is a code injection technique that attackers use to insert malicious 
SQL code into a query. 

The malicious data then produces unanticipated and potentially harmful actions 
when the database is queried.


Attackers use SQL Injection attacks to manipulate a site's database, usually to 
extract valuable information such as usernames, passwords, emails, credit card 
numbers, etc.


For example, suppose there is a login form on a website that queries the 
database like this:


```sql

SELECT * FROM Users WHERE Username='' AND Password='' 
```


An attacker could submit a username of `admin' --` and 

a password of `******`. This modifies the query to:


```sql 
SELECT * FROM Users WHERE Username='admin' --' AND 
Password='anyvalue' 
```


The double dash `--` in SQL represents a comment indicator, and anything 
following it is ignored. As a result, this query effectively checks if there is a user 
`admin`, without considering the password.


To prevent SQL Injection attacks, you should:

- Always use Parameterized queries or Prepared Statements.

- Use a Web Application Firewall.

- Regularly update and patch your systems.

- Limit the privileges of database accounts used by web applications.

- Validate and sanitize all user inputs.




Database testing involves checking the integrity, accuracy, and consistency of 
data in a database-driven application. It's a critical part of a software testing 
process as it ensures that the application provides accurate information.


The main goal of database testing is to find bugs and errors related to database 
operations, such as any data leakage, deadlocks, data corruption, performance 
issues, etc.


Database testing usually involves the following activities:


1. **Schema Testing**: Verifying the database schema to ensure it matches the 
expected schema.


2. **Data Consistency Testing**: Checking the data's correctness and 
consistency.


3. **Data Integrity Testing**: Checking the integrity of data, especially after 
operations such as update, delete, insert, and migration.


4. **Data Accuracy Testing**: Validating the data inside the database to ensure 
accuracy.


5. **Performance Testing**: Assessing the database's performance and 
optimizing the queries for better speed.


6. **Security Testing**: Ensuring that only authorized personnel have access to 
the database and checking the database's vulnerability to attacks like SQL 
Injection.


7. **ACID Properties Testing**: Verifying Atomicity, Consistency, Isolation, and 
Durability properties.


8. **Functional Flow Testing**: Checking for any functional errors during user 
flow, such as creating a new record




A Database Management Client is a computer program that provides a way to 
interact with the database. These can be command-line tools or graphical 
interfaces that let you connect to the database server, run SQL commands, 
browse and edit data, manage database objects (such as tables, indexes, keys), 
export and import data, debug, profile and more.


Here are some common Database Management Clients for different databases:


1. **MySQL Workbench**: It's a comprehensive tool for MySQL database 
management. It provides data modeling, SQL development, and easy 
administration.


2. **phpMyAdmin**: A web interface that is widely used for managing MySQL 
databases.


3. **SSMS (SQL Server Management Studio)**: It's a software application used 
for configuring, managing, and administering all components within Microsoft 
SQL Server.


4. **Oracle SQL Developer**: An integrated development environment that 
simplifies the development and management of Oracle Database.


5. **pgAdmin**: A popular open-source and feature-rich administration and 
management tool for PostgreSQL.


6. **MongoDB Compass**: The GUI for MongoDB which allows you to visually 
explore your data, run ad-hoc queries, and more.


The choice of a client often depends on what database you're using, your 
specific needs, and personal preferences.




Homework


Create a post from backend. 
 

How to understand data in columns  
 



Query 

INSERT INTO `wp_posts`(`ID`, `post_author`, `post_date`, `post_date_gmt`, 
`post_content`, `post_title`, `post_excerpt`, `post_status`, `comment_status`, 
`ping_status`, `post_password`, `post_name`, `to_ping`, `pinged`, 
`post_modified`, `post_modified_gmt`, `post_content_filtered`, `post_parent`, 
`guid`, `menu_order`, `post_type`, `post_mime_type`, `comment_count`)  
VALUES 

(290,

 1,

 2023-12-02,

 2023-12-02,

"adding_post_from_database",

 "EvgenyBackEnd",

 "NO",

 "inherit",

"closed",

"closed",

 "N0",

 "290-revision-v1",

 "to_ping",

 "pinged",

 "2023-12-02",

 "2023-12-02",

 "text",

 289,

 "https://wordpress.tech-start.io/?p=290",

 0,

 "revision",

 "q",

 0);




OR 


INSERT INTO `wp_posts`(`ID`, `post_author`, `post_date`, `post_date_gmt`, 
`post_content`, `post_title`, `post_excerpt`, `post_status`, `comment_status`, 
`ping_status`, `post_password`, `post_name`, `to_ping`, `pinged`, `post_modified`, 
`post_modified_gmt`, `post_content_filtered`, `post_parent`, `guid`, `menu_order`, 
`post_type`, `post_mime_type`, `comment_count`) VALUES (291, 1, 
"2023-12-02", "2023-12-02", "adding_post_from_database", "EvgenyBackEnd", 
"NO", "publish", "open", "closed", "N0", "291-revision-v1", "to_ping", "pinged", 
"2023-12-02", "2023-12-02", "text", 290, "https://wordpress.tech-start.io/?
p=290", 0, "post", "q", 0);






Create a query and find you post




Validate it from frontend





