Tester Job Essentials. 
Brief overview of software development and the role of testing
Software development is a process that involves several stages to create a software product. These stages typically include:
1. Requirement Analysis: Understanding what needs to be created, who will use the software, and how they will use it.
2. Design: Planning the structure of the software, including how it will work and what it will look like.
3. Implementation (or Coding): Writing the code that makes the software function.
4. Testing: This critical phase involves verifying that the software works as intended. It is where testers come in to identify any bugs or issues that need to be resolved.
5. Deployment: Making the software available for use.
6. Maintenance: Updating the software to fix issues, improve functionality, or adapt to changes in the environment or usage.

Types of development methodologies: 
1. Waterfall Model: A linear and sequential design approach where each phase must be completed before the next begins.
2. Agile Methodology: An iterative and incremental approach to software design which promotes flexible responses to change.
3. Scrum: A subset of Agile, which is a framework for developing, delivering, and sustaining complex projects.
4. Extreme Programming (XP): An Agile framework that aims to produce higher quality software and higher quality of life for the development team.
5. Lean Software Development: Inspired by lean manufacturing practices and principles, it focuses on delivering value to the customer by eliminating waste.
6. Spiral Model: Combines elements of both design and prototyping in stages, in an effort to combine advantages of top-down and bottom-up concepts.
Thera are more methodologies but we are going to concentrate on Scrum. 


Testing plays a vital role in this cycle:
· Quality Assurance: Testing is essential for quality assurance. It helps ensure that the software is reliable, performs well, and provides a good user experience.
· Verification and Validation: Testing verifies that the product meets the specified requirements and validates that the product meets user needs and expectations.
· Identifying Defects: It is used to find defects in the software, which can then be fixed before the product is released to the users.
· Preventing Future Problems: By identifying issues early in the development cycle, testing can save time and money by preventing more complex problems down the line.
· Ensuring Customer Satisfaction: By ensuring that the product is of high quality, testing helps in maintaining customer satisfaction and trust.
· Compliance: For many software products, especially in regulated industries, testing is necessary to ensure that the software complies with legal and safety standards.
Overall, testing is integrated throughout the software development lifecycle to ensure that each piece of the software works as expected and that the final product is safe, secure, and ready for deployment to users.

Work environments: 
Dev -> QA -> Staging (Stage) -> Production 

1. Development Environment: This is where developers write code, perform initial unit testing, and generally experiment with changes to the software. It's the first stage where software begins to take shape after the requirements are gathered.
2. Testing Environment: After code is written, it is transferred to a testing or staging environment. This mimics production but allows for safe testing of the new code. Quality Assurance (QA) teams test for bugs, performance, and other issues here.
3. Staging Environment: This environment is as close to an exact replica of a production environment as possible. The staging environment is used for final testing of functionality and performance, as well as for the rehearsal of deployments to the production environment.
4. Production Environment: The live environment where the application is available to all users. It's the end goal of the development process where the software is actually used for its intended purpose.


Introduction to software quality assurance
Software Quality Assurance (SQA) is a part of the software development process that focuses on providing assurance that quality requirements and goals are fulfilled. It encompasses the following:
1. Standards and Procedures: Establishing and adhering to standards and procedures for software development to ensure quality.
2. Quality Planning: Defining the quality standards and how those standards will be achieved.
3. Quality Control: Monitoring the software development process to ensure that it aligns with the planned quality standards.
4. Testing: Executing various types of testing (unit, integration, system, acceptance) to identify and fix defects.
5. Quality Metrics: Using metrics to measure aspects such as defect frequencies, operational reliability, and adherence to schedules.
6. Continuous Improvement: Implementing processes for continuous improvement in quality, often based on feedback from quality control and testing phases.
SQA is proactive, focusing on the process of software development to prevent defects before they occur, rather than just finding and fixing defects after they are introduced.


Section 1: Understanding the Tester Role [20 minutes]
Key responsibilities of a tester
The key responsibilities of a tester generally revolve around ensuring that software products meet the design and functionality intended by the developers. Here is a list of some of the core responsibilities:
1. Understanding Requirements: Analyzing user requirements to ensure the software aligns with their needs and identifying test conditions based on those requirements.
2. Test Planning: Designing test plans, scenarios, scripts, or procedures that fit the product objectives and timelines.
3. Designing Test Cases: Creating detailed, structured test cases to check for all possible issues. This includes defining the data to be used in tests, the expected outcomes, and the parameters for success.
4. Test Execution: Running tests manually or using automated tools to execute test cases and then comparing the outcomes with the expected results.
5. Defect Logging: Identifying and documenting any defects or bugs found during testing. This includes providing detailed information to enable reproduction of the issue.
6. Quality Assurance: Ensuring the product is free from defects and meets the quality standards set by the organization.
7. Collaboration with Development Teams: Working closely with developers to communicate findings, understand the technical aspects of the product, and discuss the implications of test results.
8. Regression Testing: After defects are resolved, re-testing to confirm that the original defect has indeed been fixed and that no additional issues have been introduced.
9. Performance Testing: If applicable, ensuring that the software performs well under expected workloads to ensure reliability and scalability.
10. Usability Testing: Checking the software’s user interface to ensure it is user-friendly and meets user acceptance criteria.
11. Test Reports: Compiling test results into reports and presenting them to stakeholders, such as project managers or development teams.
12. Continuous Learning: Keeping up-to-date with new testing tools, strategies, and industry trends to improve the testing process.
13. Security Testing: Ensuring that the application is secure from external threats and internal errors that could compromise data integrity.
14. Compliance: Making sure that the software complies with industry standards and regulations, if applicable.
These responsibilities may vary based on the type of testing role (e.g., manual tester, automation tester, performance tester) and the specific needs of the organization or project.

Different types of testing (manual, automated, performance, etc.)
In the field of software testing, there are various types of testing methods used to ensure that a software product is fully examined in different ways to validate its functionality, performance, and user experience. Here are some of the different types of testing:
1. Unit Testing: Checking individual components or pieces of code for correctness. Typically performed by developers.
2. Integration Testing: Ensuring that separately tested components work together when combined.
3. System Testing: Testing the complete and fully integrated software product to validate that it meets all specified requirements.
4. Acceptance Testing: Conducted to determine if the system satisfies the business requirements and is ready for delivery. This is often performed by the client or end-users.
5. Performance Testing: Evaluating the speed, responsiveness, and stability of a system under a given workload.
6. Load Testing: Similar to performance testing but specifically designed to test the system's ability to handle large amounts of data or users.
7. Stress Testing: Putting the system under extreme conditions to see where it fails in order to understand its breaking points.
8. Usability Testing: Assessing how easy the software is to use for the end-users.
9. Security Testing: Checking the software for vulnerabilities and ensuring that data and resources are protected from potential intruders.
10. Compatibility Testing: Ensuring the software works as expected across different devices, browsers, and operating systems.
11. Regression Testing: After changes are made, such as bug fixes or feature additions, tests are rerun to ensure that the changes haven't adversely affected existing functionality.
12. Smoke Testing: A preliminary test to check the basic functionality of the system. If it fails, the build is rejected to save time on more exhaustive testing.
13. Exploratory Testing: Testing without specific plans and scripts, where testers explore the system's functionalities on the go.
14. Sanity Testing: A quick, nonsystematic check to ensure that the function or bug fix works as expected.
15. Beta/Field Testing: Releasing the beta version of the software to a limited audience outside of the company to obtain feedback before the final release.
Each type of testing serves a specific purpose and may be used at different stages of the software development lifecycle. They collectively ensure that a comprehensive evaluation of the software's quality is performed.

Day-to-day activities of a tester
The day-to-day activities of a software tester can vary depending on the company and the specific project they are working on, but typically include the following tasks:
1. Reviewing Requirements: Starting the day by reviewing software requirements or user stories to understand what needs to be tested.
2. Writing Test Cases: Creating or updating test cases based on the requirements. This often involves outlining steps, expected results, and test data.
3. Setting Up Test Environment: Ensuring the testing environment is prepared with the necessary hardware, software, network configurations, etc.
4. Executing Test Cases: Running tests manually or triggering automated test suites to validate the functionality of the software.
5. Recording Test Results: Documenting the outcomes of the test cases and maintaining logs of software behavior.
6. Bug Reporting: When a defect is found, it's reported in a bug tracking system with details for developers to replicate and fix the issue.
7. Attending Stand-Ups or Meetings: Participating in daily stand-up meetings with the team to report on testing progress and discuss any obstacles.
8. Collaborating with Developers: Working closely with the development team to discuss issues, clarify requirements, and prioritize bug fixes.
9. Regression Testing: When bugs are fixed or new features are added, running regression tests to ensure that existing functionality is not broken.
10. Learning and Updating Skills: Keeping up-to-date with the latest testing tools, methodologies, and best practices in the industry.
11. Reviewing Documentation: Ensuring that all documentation is accurate and updated to reflect the latest changes to the system.
12. Performance and Security Checks: Depending on the role, they may conduct performance testing to check system behavior under load or security testing to identify potential vulnerabilities.
13. End-of-Day Wrap-Up: Reviewing the day's work, updating test tracking systems, and planning for the next day's tasks.
These activities are iterative and may overlap or be repeated as necessary throughout the software development lifecycle.





Section 2: Essential Skills for Testers [20 minutes]

Technical skills: Understanding of software development, programming languages for automated testing, tools, and technologies
A software tester should have a range of technical skills to effectively analyze software and identify any issues. Here are some of the key technical skills expected:
1. Understanding of Software Development Life Cycle (SDLC): Knowledge of the phases of software development to understand how the testing phase fits in.
2. Proficiency in Test Management Tools: Familiarity with tools such as JIRA, HP Quality Center, TestRail, or others for test case management and bug tracking.
3. Experience with Automated Testing Tools: Skills in using tools like Selenium, QTP, LoadRunner, or similar for automating test cases.
4. Programming Skills: Ability to write code in programming languages such as Java, Python, C#, or scripting languages for automated testing.
5. Database/SQL Knowledge: Understanding of databases with the ability to create queries and validate data.
6. Knowledge of Different Testing Techniques: Familiarity with various testing techniques like black-box testing, white-box testing, and others.
7. Operating Systems: Comfort with different operating systems such as Windows, Linux, or MacOS.
8. Understanding of Networking Basics: Basic knowledge of networks to test applications in different network environments and configurations.
9. Version Control Systems: Proficiency in version control systems such as Git to manage changes to source code over time.
10. API Testing Skills: Experience with API testing tools like Postman or SoapUI for validating application logic.
11. Performance Testing: Knowledge of performance testing principles and tools to check software behavior under load.
12. Security Testing Basics: Awareness of security principles and potential vulnerabilities in software applications.
13. Mobile Testing: Skills in testing mobile applications across various devices and operating systems, if applicable.
14. Continuous Integration/Continuous Deployment (CI/CD): Understanding of CI/CD pipelines and tools like Jenkins, CircleCI, or Travis CI.
These technical skills enable testers to navigate complex software environments and ensure the software meets quality standards. The importance of each skill can vary depending on the specific needs of the role or the project they are working on.



Soft skills: Attention to detail, problem-solving, communication, and teamwork
Soft skills are crucial for a software tester as they often determine how effectively an individual can work within a team, communicate findings, and contribute to a project's success. Here are key soft skills that are important for a software tester:
1. Analytical Skills: The ability to break down complex software systems into smaller parts to understand the underlying structure and logic.
2. Attention to Detail: Keen observation skills to spot discrepancies and defects that might be missed by others.
3. Communication Skills: Clear and concise communication is vital for documenting test cases, reporting bugs, and collaborating with team members.
4. Problem-Solving: Being able to approach problems systematically to find solutions and workarounds for various issues.
5. Critical Thinking: The ability to evaluate information objectively and make reasoned judgments, especially when validating test results and assessing software quality.
6. Time Management: Balancing multiple tasks and deadlines effectively, often under pressure.
7. Adaptability: The readiness to learn and adjust to new tools, technologies, and changing project requirements.
8. Teamwork: Collaborating with developers, business analysts, project managers, and other stakeholders is essential for a tester.
9. Empathy: Understanding the user perspective to test the software's usability and ensure it meets user needs.
10. Curiosity: A natural inclination to ask questions and a strong desire to understand how things work.
11. Patience: Testing can be repetitive and sometimes tedious. Patience is crucial when looking for hard-to-find bugs or when needing to repeat tests multiple times.
12. Resilience: The ability to handle criticism constructively, especially when reported issues are downplayed or overlooked by others.
13. Negotiation Skills: Testers often need to advocate for quality and persuade others to take action on the issues they find.
14. Customer-Centric Approach: Keeping the end user's experience in mind when testing and reporting on software functionality.
These soft skills complement the technical abilities of a tester and are critical in ensuring that the tester can effectively contribute to the development team and the overall quality of the product.



Industry certifications and their benefits
Industry certifications can play a significant role in a Quality Assurance (QA) engineer's career development. They provide a formal recognition of expertise and knowledge in the field of software testing and quality assurance. Here are several well-regarded industry certifications for QA engineers:
1. ISTQB (International Software Testing Qualifications Board) Certifications:
· ISTQB Certified Tester Foundation Level (CTFL)
· ISTQB Certified Tester Advanced Level (CTAL)
· ISTQB Certified Tester Expert Level (CTEL)
2. Quality Assurance Institute (QAI) Certifications:
· Certified Software Quality Analyst (CSQA)
· Certified Software Tester (CSTE)
3. ASQ (American Society for Quality) Certifications:
· ASQ Certified Software Quality Engineer (CSQE)
4. IREB (International Requirements Engineering Board) Certifications:
· Certified Professional for Requirements Engineering (CPRE)
5. Rational Functional Tester from IBM:
· IBM Certified Solution Designer - Rational Functional Tester for Java
6. Certified Software Test Professional (CSTP):
· Offered by the International Institute for Software Testing (IIST)
7. Certified Associate in Software Testing (CAST):
· Offered by the Quality Assurance Institute (QAI)
8. Certified Manager of Software Testing (CMST):
· Offered by QAI
9. Certified Software Test Engineer (CSTE):
· Offered by QAI
10. Certified Mobile Tester:
· Offered by the Global Association for Quality Management (GAQM)
11. Certified Test Engineer (CSTE):
· Offered by the International Institute for Software Testing (IIST)
These certifications often require passing an exam and may also have prerequisites such as a certain amount of industry experience or prior education. They can help QA engineers to validate their skills, improve their job prospects, and often command higher salaries. It's important to choose a certification that aligns with career goals and the specific areas of expertise one wishes to develop. 






